Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2041, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503741

RESUMO

Lyme disease is a tick-borne disease caused by bacteria of the genus Borrelia. The host factors that modulate susceptibility for Lyme disease have remained mostly unknown. Using epidemiological and genetic data from FinnGen and Estonian Biobank, we identify two previously known variants and an unknown common missense variant at the gene encoding for Secretoglobin family 1D member 2 (SCGB1D2) protein that increases the susceptibility for Lyme disease. Using live Borrelia burgdorferi (Bb) we find that recombinant reference SCGB1D2 protein inhibits the growth of Bb in vitro more efficiently than the recombinant protein with SCGB1D2 P53L deleterious missense variant. Finally, using an in vivo murine infection model we show that recombinant SCGB1D2 prevents infection by Borrelia in vivo. Together, these data suggest that SCGB1D2 is a host defense factor present in the skin, sweat, and other secretions which protects against Bb infection and opens an exciting therapeutic avenue for Lyme disease.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Camundongos , Animais , Humanos , Borrelia burgdorferi/genética , Doença de Lyme/microbiologia , Ixodes/microbiologia , Secretoglobinas
2.
Polymers (Basel) ; 15(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38006190

RESUMO

Glaucoma has become the world's leading cause of irreversible blindness, and one of its main characteristics is high intraocular pressure. Currently, the non-surgical drug treatment scheme to reduce intraocular pressure is a priority method for glaucoma treatment. However, the complex and special structure of the eye poses significant challenges to the treatment effect and safety adherence of this drug treatment approach. To address these challenges, the application of polymer-based self-assembled drug delivery systems in glaucoma treatment has emerged. This review focuses on the utilization of polymer-based self-assembled structures or materials as important functional and intelligent carriers for drug delivery in glaucoma treatment. Various drug delivery systems, such as eye drops, hydrogels, and contact lenses, are discussed. Additionally, the review primarily summarizes the design strategies and methods used to enhance the treatment effect and safety compliance of these polymer-based drug delivery systems. Finally, the discussion delves into the new challenges and prospects of employing polymer-based self-assembled drug delivery systems for the treatment of glaucoma.

3.
J Colloid Interface Sci ; 612: 156-170, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34992016

RESUMO

Developing the multi-functional membranes including oil/water emulsion separation and removal of hazardous organic pollutants is essential to the purification of the complicated wastewater. However, it remains a daunting challenge to combine these intended functions while maintaining high separation efficiency. Herein, we developed a new 2D lamellar MXene/poly (arylene ether nitrile) (PEN) fibrous composite membrane through the self-assembly of TiO2 nanoparticles intercalated MXene nanosheets onto the porous PEN nanofibrous mats and bioinspired polydopamine triggered chemical-crosslinking with polyethyleneimine (PEI). Such nano-intercalation and mussel-inspired crosslinking could effectively regulate the interlayer spacing of the MXene nanosheet skin layer and surface wettability of the composite membrane, which also further contributed to the fast separation and unique bifunctional feature. It was found that the MXene@TiO2/PEN fibrous composite membrane exhibited low oil-adhesion and superhydrophilic (WCA = 0°)/underwater superoleophobic (UOCA > 155°) properties, which could efficiently separate various surfactant-stabilized oil-in-water emulsions under low pressure of 0.04 MPa while keeping good stability (Under 1 M HCl and 2 M NaOH solutions) and recyclability. Interestingly, the fibrous composite membrane achieved favorable permeation flux of 908-1003 Lm-2h-1 (2270-2507.5 Lm-2h-1bar-1) in comparison to other reported MXene based multifunctional composite membranes. Moreover, owing to the synergistic effect of MXene nanosheets and TiO2 nanoparticles, the MXene@TiO2/PEN membrane showed excellent photocatalytic degradation performance for various dyes under visible light, i.e. the photocatalytic degradation efficiency for 15 ppm MB, MO, CV, and MeB solutions achieved 92.31%, 93.50%, 98.06%, and 99.30% within 60 min, respectively. Such 2D MXene bio-functional composite membranes with outstanding oil/water emulsions separation and photocatalytic degradation of dyes pave an avenue for treating complicated oily wastewater.


Assuntos
Purificação da Água , Éter , Éteres , Membranas Artificiais , Nitrilas , Fotólise , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...